
Frame Relay is a packet-switching network

Protocol that is designed to work at the data link layer of the network. It is used to connect Local Area Networks (LANs) and transmit data across Wide Area Networks (WANs). It is a better alternative to a point-to-point network for connecting multiple nodes that require separate dedicated links to be established between each pair of nodes. It allows transmission of different size packets and dynamic bandwidth allocation. Also, it provides a congestion control mechanism to reduce the network overheads due to congestion. It does not have an error control and flow management mechanism.

Frame Relay Network

Working:

Frame relay switches set up virtual circuits to connect multiple LANs to build a WAN. Frame relay transfers data between LANs across WAN by dividing the data in packets known as frames and transmitting these packets across the network. It supports communication with multiple LANs over the shared physical links or private lines.

Frame relay network is established between Local Area Networks (LANs) border devices such as routers and service provider network that connects all the LAN networks. Each LAN has an access link that connects routers of LAN to the service provider network terminated by the frame relay switch. The access link is the private physical link used for communication with other LAN networks over WAN. The frame relay switch is responsible for terminating the access link and providing frame relay services.

For data transmission, LAN's router (or other border device linked with access link) sends the data packets over the access link. The packet sent by LAN is examined by a frame relay switch to get the Data Link Connection Identifier

(DLCI) which indicates the destination of the packet. Frame relay switch already has the information about addresses of the LANs connected to the network hence it identifies the destination LAN by looking at DLCI of the data packet. DLCI basically identifies the virtual circuit (i.e. logical path between nodes that doesn't really exist) between source and destination network. It configures and transmits the packet to frame relay switch of destination LAN which in turn transfers the data packet to destination LAN by sending it over its respective access link. Hence, in this way, a LAN is connected with multiple other LANs by sharing a single physical link for data transmission.

Frame relay also deals with congestion within a network. Following methods are used to identify congestion within a network:

1. Forward Explicit Congestion Network (FECN) -

FECN is a part of the frame header that is used to notify the destination about the congestion in the network. Whenever a frame experiences congestion while transmission, the frame relay switch of the destination network sets the FECN bit of the packet that allows the destination to identify that packet has experienced some congestion while transmission.

2. Backward Explicit Congestion Network (BECN) -

BECN is a part of the frame header that is used to notify the source about the congestion in the network. Whenever a frame experiences congestion while transmission, the destination sends a frame back to the source with a set BECN bit that allows the source to identify that packet that was transmitted had experienced some congestion while reaching out to the destination. Once, source identifies congestion in the virtual circuit, it slows down to transmission to avoid network overhead.

3. Discard Eligibility (DE) -

DE is a part of the frame header that is used to indicate the priority for discarding the packets. If the source is generating a huge amount of traffic on the certain virtual network then it can set DE bits of less significant packets to indicate the high priority for discarding the packets in case of network overhead. Packets with set DE bits are discarded before the packets with unset DE bits in case of congestion within a network.

Types:

1. Permanent Virtual Circuit (PVC) -

These are the permanent connections between frame relay nodes that exist for long durations. They are always available for communication even if they are not in use. These connections are static and do not change with time.

2. Switched Virtual Circuit (SVC) -

These are the temporary connections between frame relay nodes that exist for the duration for which nodes are communicating with each other and are closed/ discarded after the communication. These connections are dynamically established as per the requirements.

Advantages:

- 1. High speed
- 2. Scalable
- 3. Reduced network congestion
- 4. Cost-efficient
- 5. Secured connection

Disadvantages:

- 1. Lacks error control mechanism
- 2. Delay in packet transfer
- 3. Less reliable